Image Edge Detection Algorithm with a Single Grid System of Coupled FitzHugh-Nagumo Elements

<u>A. Nomura</u>, M. Ichikawa, K. Okada, T. Sakurai & Y. Mizukami Yamaguchi Univ. & Chiba Univ. Japan

Key words: image processing, edge detection application of nonlinear elements, FitzHugh-Nagumo model initial conditions for FHN model

Outline

- Introduction: Motivation and Approach
- Background:
 - Nonlinear phenomena and pattern formation in nature
 - Image edge detection and previous algorithms in image processing
- Our Previous Edge Detection Algorithm with cFHN
 - FitzHugh-Nagumo (FHN) model
 - Grid system of coupled FHN (cFHN) and the initial conditions
- Proposed Edge Detection Algorithm with cFHN
 - The initial conditions
- Experimental Results
 - Artificial images with/without noise
 - Real images
- Conclusion

Introduction: Motivation and Approach

- Motivation
 - Biological visual system
 - Bio-inspired image processing
 - edge detection, segmentation and stereo disparity detection
- Approach
 - Coupled FitzHugh-Nagumo (cFHN) elements on a grid system
 - Reaction-diffusion system (diffusively coupled elements)
- Our previous edge detection algorithm
 - does not work for gray level image
 - noise vulnerability or not robust to noise

Background:

Nonlinear Phenomena & Pattern Formation

- Nonlinear elements in nature
 - Biological response to external stimuli: FitzHuhg-Nagumo model
 - Nonlinear oscillation or excitation in chemical reaction system
- Reaction-diffusion system
 - System of diffusively coupled nonlinear elements in space
 - Patterns: traveling pulses in 1D space and spiral waves in 2D space
 - Information transmission & information processing

Background: Definition of Image Edge

Point having rapid brightness change

Background: Previous Edge Detection Algorithms

- Algorithms by Marr and Hildreth (1980)
 - LoG: Laplacian-of-the-Gaussian
 - Gaussian: noise reduction
 - Laplacian operator: detection of inflection points
 - DoG: Difference-of-two-Gaussians
 - *G_e*: excitation (blurred)
 - *G_i*: inhibition (more blurred)
 - Detecting zero-crossing points
- Algorithm by Canny (1986)
 - Gaussian smoothing + gradient operator + threshold
 - assumption: continuity of edges

Our Previous Edge Detection Algorithm: FitzHugh-Nagumo (FHN) Model

Our Previous Edge Detection Algorithm: Single Grid System of Coupled FHN (cFHN)

- Uni-stable elements placed at image grid points
 - Nomura et al., J. Phys. Soc. Jpn., 2003
 - Kurata et al., Phys. Rev. E, 2009

$$\frac{\mathrm{d}u_{i,j}}{\mathrm{d}t} = C_u \left[\overline{u_{i,j}} - 4u_{i,j}\right] + \frac{1}{\varepsilon} \left[u_{i,j}(u_{i,j} - a)(1 - u_{i,j}) - v_{i,j}\right]$$
$$\frac{\mathrm{d}v_{i,j}}{\mathrm{d}t} = C_v \left[\overline{v_{i,j}} - 4v_{i,j}\right] + u_{i,j} - bv_{i,j}$$
Spatial coupling $\overline{u_{i,i}}, \overline{u_{i,j}}$: averages in the nearest four points.

• The initial conditions:

 $u_{i,j} = I_{i,j}, v_{i,j} = 0$

- Strong inhibition: $C_u << C_v$ \Rightarrow Stationary pulses at edge positions
- Weak inhibition: $C_u > C_v$ \Rightarrow Propagating pulses

u and v

Our Previous Algorithm for Edge Detection: Example of Edge Detection with cFHN

• Example:

Initial condition of $u_{i,i}$

Result of edge detection (*a*=0.1)

o ====

Threshold for the initial condition u₀ & Self-organized pulse
=> Previous algorithm does not work for gray level images

Proposed Algorithm: cFHN & Initial Conditions

Coupled FHN elements: delaying computation of u_{i,j}

$$\frac{\mathrm{d}u_{i,j}}{\mathrm{d}t} = C_u \left[\overline{u_{i,j}} - 4u_{i,j} \right] + \underbrace{\frac{1}{\varepsilon} \left[u_{i,j} (u_{i,j} - a)(1 - u_{i,j}) - v_{i,j} \right]}_{f(u_{i,j}, v_{i,j})}, \quad \underline{t > 0}$$

$$\frac{\mathrm{d}v_{i,j}}{\mathrm{d}t} = C_v \left[\overline{v_{i,j}} - 4v_{i,j} \right] + u_{i,j} - bv_{i,j}, \quad t > -\tau$$

Experimental Results: Artificial Noiseless Image

Proposed Algorithm C_u =4, C_v =12, *a*=0.1, *b*=4.5, ε =1.0×10⁻³, τ =5.0×10⁻⁴ δt =1.0×10⁻⁴ Canny Algorithm σ =0.40, θ_l =0.10, θ_h =0.20

Experimental Results: Artificial Noisy Image

The Image 500×500 pixels 256 brightness levels S.D. of noise=10 Proposed Algorithm C_u =4, C_v =12, *a*=0.1, *b*=4.5, ϵ =1.0×10⁻³, τ =0.1 δt =1.0 × 10⁻⁴

Canny Algorithm σ =1.20 θ_l =0.40, θ_h =0.70

Experimental Results:

Quantitative Results with P, R and F measures

Algorithm	Image	Р	R	F
Our Previous	(a)	0.989	0.906	0.946
Algorithm	(b)	0.747	0.908	0.819
Proposed	(a)	0.999	<mark>0.979</mark>	<mark>0.989</mark>
Algorithm	(b)	0.825	0.945	0.881
Canny	(a)	1.000	0.975	0.987
Algorithm	(b)	0.999	<mark>0.965</mark>	<mark>0.982</mark>

Image: (a) Noiseless image (b) Noisy image (s.d.=10.0)

red is the best performance

• Algorithms:

- Our Previous Algorithm (Nomura et al., 2011)
- Proposed Algorithm
- Canny Algorithm (Canny, 1986)
- Evaluation measures: M_o : obtained edge map $P = \frac{|M_t \cap M_o|}{|M_o|}, R = \frac{|M_t \cap M_o|}{|M_t|}, F = \frac{2PR}{P+R}$ M_t : true edge map

Experimental Results: Real Image (1/2)

 $C_{u}=4$ $C_{v}=12$ a=0.1 b=4.5 $\varepsilon=1.0\times10^{-3}$ $\tau=0.1$ $\delta t=1.0\times10^{-4}$

The image 659×409 pixels, 256 brightness levels

http://marathon.csee.usf.edu/edge/edgecompare_main.html

Proposed Algorithm

Canny Algorithm http://marathon.csee.usf.edu/edge/edgecompare_main.html

Experimental Results: Real Image (2/2)

The image 461×665 pixels 256 brightness levels http://marathon.csee.usf.edu/edge/edgecompare_main.html

Proposed Algorithm C_u =4, C_v =12, *a*=0.1, *b*=4.5 ϵ =1.0×10⁻³, τ =0.1 δt =1.0 × 10⁻⁴

Canny Algorithm $\sigma=1.2, \theta_l=0.3, \theta_h=0.8$ http://marathon.csee.usf.edu/edge/edgecompare_main.html

Conclusion

- Grid system of coupled FitzHugh-Nagumo elments for image edge detection
 - Reconsidering initial conditions for $u_{i,i}$ and $v_{i,j}$
 - Delaying computation of $u_{i,j}$
- Experiments for artificial and real gray level images
- The proposed algorithm achieved better performance than our previous algorithm.
- Future topics:
 - Noise robustness
 - Detection of blurred edges and edge strength evaluation