IVCNZ 2012 at Dunedin, Otago, NZ November 26-28, 2012

Subpixel Stereo Disparity for Surface Reconstruction by Utilising a Three-Dimensional Reaction-Diffusion System

keywords: stereo algorithm, subpixel, reaction-diffusion, PDEs and numerical computation

A. Nomura, K. Okada, Y. Mizukami

H. Miike, M. Ichikawa & T. Sakurai

Yamaguchi Univ. & Chiba Univ.

Japan

Outline

- Introduction and motivation
- Reaction-diffusion system
- Proposed algorithm
- Experimental results for the Middlebury stereo data-sets
- Conclusion

Introduction & Motivation

- Reconstruction of slanted or curved surface
- Previous algorithms:
 - Tsukahara and Hirai, IEICE Trans. Inf. Syst., 1993
 - Bleyer et al., Proc. BMVC, 2011
- Our previous algorithm:
 - Nomura et al., Machine Vision and Applications, 2009
 - multiple 2D reaction-diffusion systems exclusively linked.
 - stereo corresponding problem => segmentation problem, not suitable for reconstruction of slanted or curved surface.
- Reaction-Diffusion Stereo algorithm with subpixel disparity in 3D domain (space and disparity).

Definition of a Reaction-Diffusion System

• Time-evolving partial-differential equation (PDE)

$$\frac{\partial u}{\partial t} = \underbrace{D_u \nabla^2 u}_{\text{diffusion}} + f(u)$$

- u(x, t): distribution defined in space x and at time t > 0.
- D_u : diffusion coefficient
- ∇^2 : Laplacian operator on space x
- f(u): reaction function

An Autonomous System: FitzHugh-Nagumo (FHN) Element

Time-evolving ordinary-differential equation (ODE)

$$\frac{du}{dt} = f(u,v) = \frac{1}{\epsilon} [u(u-a)(1-u) - v]$$
$$\frac{dv}{dt} = g(u,v) = u - bv$$

u(t), v(t): variables defined at time t > 0. f(u, v), g(u, v): reaction functions a, b, ϵ : constants A,B: stable and C: unstable

FHN Type Reaction-Diffusion System

• Diffusively coupled FHN elements:

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u + \frac{1}{\epsilon} [u(u-a)(1-u) - v]$$
$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + u - bv$$

u(x,t), v(x,t): distributions defined in space x and at time t > 0.
D_u, D_v: diffusion coefficients.
=> propagating wave solution

Proposed Reaction-Diffusion Stereo Algorithm FHN Type Reaction-Diffusion System in 3D

• (*u*, *v*): defined in space (*x*, *y*) and disparity *d*.

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u + \frac{1}{\epsilon} \left[u \left(u - a(u_m) \right) (1 - u) - v \right] + \mu C_d$$

$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + u - bv$$

$$a(\cdot): \text{ monotonically increasing function} u_m = \max(u) \text{ in an inhibitory area} C_d: \text{ cross-correlation computed at a disparity } d$$

$$\mu: \text{ coefficient (fixed in the 1st step and varied in the 2nd step)} u(x, y, d, t), v(x, y, d, t): \text{ distributions in a 3D domain}$$

 $a(\cdot)$:

Proposed Reaction-Diffusion Stereo Algorithm
Finite Difference Method

- $\delta x, \delta y, \delta t$: finite differences on space and time
- δd: finite difference on disparity d
 => subpixel stereo disparity
- discretising PDEs => a set of linear eqs.

$$\frac{\partial u}{\partial t} \simeq \frac{u_{i,j,k}^{n+1} - u_{i,j,k}^{n}}{\delta t}$$
$$\frac{\partial^2 u}{\partial x^2} \simeq \frac{u_{i+1,j,k}^{n+1} - 2u_{i,j,k}^{n+1} + u_{i-1,j,k}^{n+1}}{\delta x^2}$$

$$\begin{aligned} x &\simeq i \delta x, y \simeq j \delta y, d \simeq k \delta d, t \simeq n \delta t \\ u(x, y, d, t) &\simeq u_{i, j, k}^n \end{aligned}$$

Proposed Reaction-Diffusion Stereo Algorithm Two-Step Algorithm

• Evaluation of a coefficient μ in the second step.

Algorithm Summary

- Pre-processing
 - Compute a cross-correlation function $C_{i,j,k}$ for a stereo image pair at possible subpixel disparity levels ($k = d/\delta d$).
 - Prepare initial conditions $(u_{i,j,k}^{n=0}, v_{i,j,k}^{n=0})$.
- while ($n < L_t/\delta t$) do
 - Compute $(u_{i,j,k}^n, v_{i,j,k}^n)$ with the reaction-diffusion system.
 - If $n \ge \ell_t / \delta t$, evaluate $M_{i,j}^n$ and $\mu_{i,j,k}$.
 - $n \leftarrow n+1$
- end while

 L_t : finite duration of time ℓ_t : time for the second-step Disparity map: $M_{i,j}^n = \underset{k}{\operatorname{argmax}} u_{i,j,k}^n$

Stereo Images and the Ground-Truth Disparity Maps

 Available via the Middlebury stereo vision page (http://vision.middlebury.edu/stereo/)

TSUKUBA 384x288 pixels 15 disparity levels VENUS 434x383 pixels 20 disparity level TEDDY 450x375 pixels 60 disparity levels CONES 450x375 pixels 60 disparity levels

Scores for the Middlebury Stereo Data-Sets (Previous* vs Proposed)

 B_{θ} : Bad-Match-Percentage (BMP) error with threshold θ (%)

R: Root-mean-squares error (pixel)

Av. Rnk: Average Rank on the Middlebury website (September 8th, 2012).

		TSUKUBA			VENUS			TEDDY			CONES			Av.
		noc	all	ddi	noc	all	ddi	noc	all	ddi	noc	all	ddi	Rnk
Previous*	B _{1.0}	7.01 133	8.81 133	19.8 125	2.81 114	3.97 115	21.6 120	14.0 117	20.0 116	29.4 123	5.03 88	12.1 ⁸⁹	14.1 100	114.4
	B _{0.5}	22.8 94	24.2 ₉₈	27.6 116	10.9 106	12.0 108	25.7 111	22.5 113	29.3 114	39.0 115	10.3 ₆₃	17.4 ⁶⁵	22.1 ⁸⁷	99.2
	R	1.43	1.62	2.50	0.75	0.92	2.01	2.16	3.21	3.35	1.94	3.08	3.35	
Proposed	B _{1.0}	13.5 135	15.1 135	18.5 120	3.69 119	4.89 119	18.6 116	10.8 108	17.8 109	25.3 113	3.91 ₆₅	10.5 71	11.5 78	107.3
	B _{0.5}	19.9 ⁷⁹	21.4 82	24.1 98	6.32 57	7.57 66	21.8 103	13.6 ⁵⁰	21.8 65	30.7 ₆₈	5.04 11	12.2 16	13.8 19	59.5
	R	1.90	2.02	2.27	1.45	1.69	2.58	3.67	7.10	5.81	1.66	2.55	2.88	

*Previous: Nomura et al., Machine Vision and Applications, 2009.

Results for the Middlebury Stereo Data-Sets
Subpixel Accuracy for CONES

Results for the Middlebury Stereo Data-Sets Temporal Changes of BMP errors

Results for the Middlebury Stereo Data-Sets Demonstration of the Two-Step Algorithm

• The second step was switched on at $\ell_t = 5.0$.

t = 6.0

Disparity maps obtained for TEDDY

Conclusion

- Summary of the proposed algorithm
 - a reaction-diffusion system defined in 3D domain
 - subpixel disparity with a finite difference method
 - two-step algorithm
- Results
 - effective for reconstruction of slanted or curved surface.
 - highly improved for the threshold level $\theta = 0.5$
- Future research work
 - utilising colour information of stereo images