REACTION-DIFFUSION STEREO ALGORITHM WITH ANISOTROPIC INHIBITORY DIFFUSION

Atsushi Nomura¹⁾ Makoto Ichikawa²⁾ Koichi Okada¹⁾ Hidetoshi Miike¹⁾ ¹⁾Yamaguchi University, Japan ²⁾Chiba University, Japan

Introduction: Binocular Stereo Vision

Previous Stereo Algorithms

- Marr & Poggio, Proc. Roy. Soc. Lond., 1979
 - original cooperative algorithm
 - continuity & uniqueness constraints
 - bio-inspired algorithm
- Zitnick & Kanade, IEEE-PAMI, 2000
 - modern cooperative algorithm + occlusion detection
- Sun et al., IEEE-PAMI, 2003
 - belief-propagation algorithm
- Deng et al., *IEEE-PAMI*, 2007
 - graph-cuts algorithm

Diffusion Equation & PDE Approach in Image Processing & Computer Vision Research

- Koenderink, *Biol. Cybern.*, 1984
 - Diffusion equation = Gaussian filter
- Perona & Malik, IEEE-PAMI, 1990
- Black et al., IEEE-IP, 1998

Anisotropic diffusion

- Mrázek & Navara, IJCV, 2003
 - Stopping time for non-linear diffusion filtering

Isotropic diffusion equation:

$$\partial_t u = D\nabla^2 u + s$$

D: diffusion coefficient, *s*: source => uniform distribution Anisotropic diffusion equation:

$$\partial_t u = \nabla \cdot [D(x, y)\nabla u] + s$$

D(x,y): anisotropic diffusion coefficient

diffusion depends on a position (x,y)

 $\partial_t = \partial / \partial t, \nabla^2$: Laplacian Operator

Reaction-Diffusion Algorithm

- Adamatzky et al., *Reaction-Diffusion Computers*, 2005
 - proposed novel computer architecture, by utilizing reaction-diffusion equations.
 - natural computing.
- FitzHugh-Nagumo reaction-diffusion equations

$$\partial_t u = D_u \nabla^2 u + \frac{1}{\varepsilon} \begin{bmatrix} u(u-a)(1-u) - v \end{bmatrix}$$
Constants:

$$0 < \varepsilon < < 1$$

$$a, b$$
Constants:

$$O_t v = D_v \nabla^2 v + u - bv$$

Diffusion Reaction

u: activator, v: inhibitor

FitzHugh, *Biophysical J.*, 1961 Nagumo et al., *Proc. IRE*, 1962 _{5/14}

Reaction-Diffusion Equations in 1D Space

FitzHugh-Nagumo equations: bi-stable system

Reaction-Diffusion Stereo Algorithm

• Nomura et al., Machine Vision and Applications (2009)

$$\partial_t u_n(x, y, t) = D_u \nabla^2 u_n + f(u_n, v_n, u_{\max}) + \mu C(x, y, d_n)$$

$$\partial_t v_n(x, y, t) = D_v \nabla^2 v_n + g(u_n, v_n)$$

The diffusion term $D_u \nabla^2 u_n$ drives the propagation of region of the disparity level d_n .

$$f(u_n, v_n, u_{\max}) = \frac{1}{\varepsilon} \left[u_n (u_n - a(u_{\max}))(1 - u_n) - v_n \right]$$

$$g(u_n, v_n) = u_n - bv_n$$

Disparity map:

$$M(x,y,t) = \underset{n \in \{0,1,\dots,N-1\}}{\operatorname{argmax}} u_n(x,y,t)$$

µ: constant
N: total number of
possible disparity levels
C: similarity measure
d_n: disparity level

Proposed Reaction-Diffusion Stereo Algorithm

$$\partial_t u_n = D_u \nabla^2 u_n + f(u_n, v_n, u_{\max}) + \mu C(x, y, d_n)$$

$$\partial_t v_n = \nabla \cdot \left[D_v(x, y) \nabla v_n \right] + g(u_n, v_n)$$

The diffusion coefficient $D_v(x,y)$ is set to be large around depth-discontinuity areas.

How to Estimate the Inhibitory Diffusion Coefficient $D_v(x,y)$

Initial disparity map + Edges detected from intensity image

Edge detection algorithm with reaction-diffusion equations:

- Nomura et al., J. Phys. Soc. Jpn., 2003
 - Edge detection & Segmentation
 - Discrete version of reaction-diffusion equations
 - Thresholding
- Nomura et al., Patt. Recog. Image Anal., 2008
 - Edge detection utilizing reaction-diffusion equations
 - Adaptive threshold level

- Step 1: Compute cross-correlation functions.
- Step 2: Detect edges in the left image.
- Step 3: Estimate D_v(x,y) with an initial disparity map and an edge map.
- Step 4: Compute reaction-diffusion equations iteratively.
- Step 5: Estimate a disparity map.

Experimental Results

- The Middlebury stereo vision page provides
 - stereo image pairs,
 - ground-truth data of disparity maps,
 - definition of areas (occlusion area & depth discontinuity),
 - scores of other stereo algorithms
 - http://vision.middlebury.edu/stereo/
- Example of stereo image pairs

CONES 450X375 pixels TEDDY 450X375 pixels 60 disparity levels

60 disparity levels

TSUKUBA 384X288 pixels 15 disparity levels

VENUS 434X383 pixels 30 disparity levels 11/14

Results on the Middlebury Stereo Data

Algorithm		Reaction-diffusion stereo algorithm						Adapting BP
version		Original (Nomura et al., <i>Mach.</i> <i>Vis. Appl.</i> , 2009)		IIEI (Nomura et al., <i>Proc.</i> <i>VISAPP</i> , 2009)		Proposed		(Klaus et al., <i>Proc. ICPR</i> , 2006)
Image pair	Area	BMP (%)	RMS (pixel)	BMP (%)	RMS (pixel)	BMP (%)	RMS (pixel)	BMP (%)
TSUKUBA	nonocc.	<u>6.77</u>	<u>1.42</u>	8.51	1.54	7.02	1.47	1.11
	all	<u>8.53</u>	<u>1.61</u>	10.23	1.72	8.54	1.64	1.37
	disc.	18.68	<u>2.47</u>	19.42	2.52	<u>18.55</u>	2.60	5.79
VENUS	nonocc.	2.81	0.75	3.17	0.77	<u>1.21</u>	<u>0.59</u>	0.10
	all	3.97	0.92	4.33	0.92	<u>2.44</u>	<u>0.80</u>	0.21
	disc.	21.64	2.01	19.62	1.88	<u>8.12</u>	<u>1.52</u>	1.44
TEDDY	nonocc.	14.26	<u>2.19</u>	<u>14.00</u>	2.38	14.56	2.29	4.22
	all	20.26	<u>3.23</u>	<u>20.00</u>	4.36	20.64	3.32	7.06
	disc.	29.19	<u>3.36</u>	28.89	3.48	<u>27.98</u>	3.45	11.8
CONES	nonocc.	<u>5.03</u>	1.94	5.08	<u>1.85</u>	5.21	1.88	2.48
	all	<u>12.13</u>	<u>3.08</u>	12.35	5.45	13.34	3.15	7.92
	disc.	14.06	3.34	<u>13.67</u>	<u>3.03</u>	14.08	3.17	7.32

nonocc.: non-occlusion area, all: all area, disc.: depth discontinuity area BMP: bad-match-percentage, RMS: Root Mean Squares

Example: VENUS

Conclusion & Future Work

- Conclusion:
 - We proposed integration of intensity edge information into the reaction-diffusion stereo algorithm.
 - Key point: inhibitory diffusion coefficient is set to be large around depth discontinuity areas.
 - We confirmed performance of the proposed algorithm.
- Future work:
 - How to estimate depth discontinuity areas.
 - Dynamic interactions between disparity detection and edge detection.

Acknowledgments:

The present study was supported in part by the Grant-in-Aid for Scientific Research (C) (No. 20500206) from the Japan Society for the Promotion of Science.